{ "cells": [ { "cell_type": "markdown", "id": "f8776c6e-5d39-4f3e-9d9a-152dd0359c93", "metadata": {}, "source": [ "# pymzml" ] }, { "cell_type": "raw", "id": "5ea454b7-3fb4-4d87-86ac-62dcbb2671b1", "metadata": { "editable": true, "raw_mimetype": "text/html", "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "\n", " \"Launch\n", "\n", "

" ] }, { "cell_type": "markdown", "id": "efb4dce4-75eb-464d-b839-bd3e93819142", "metadata": {}, "source": [ "## Install pymzml" ] }, { "cell_type": "code", "execution_count": 1, "id": "6944da94-fa96-4f8e-bb68-798ca545e810", "metadata": {}, "outputs": [], "source": [ "!pip install pymzml --quiet" ] }, { "cell_type": "code", "execution_count": 2, "id": "44c8ed73-b62f-4c05-ab3a-f00fd8ba84c1", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import pymzml" ] }, { "cell_type": "markdown", "id": "29a93547-1b8c-4b93-91c0-17c7caf932fd", "metadata": {}, "source": [ "## Download the test file" ] }, { "cell_type": "code", "execution_count": 4, "id": "02396b2f-50c4-4e7c-b938-74a8f4c28dd8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "File test.mzML downloaded successfully!\n" ] } ], "source": [ "# # Download test file\n", "import requests\n", "\n", "url = 'https://raw.githubusercontent.com/levitsky/pyteomics/master/tests/test.mzML'\n", "file_name = 'test.mzML'\n", "\n", "# Send a GET request to the URL\n", "response = requests.get(url)\n", "\n", "# Save the content of the response to a file\n", "with open(file_name, 'wb') as file:\n", " file.write(response.content)\n", "\n", "print(f'File {file_name} downloaded successfully!')\n" ] }, { "cell_type": "markdown", "id": "9c601f0e-9118-44e5-a8d0-96b62ef1e65e", "metadata": {}, "source": [ "## Load `.mzML` file and convert to `pd.DataFrame`" ] }, { "cell_type": "code", "execution_count": 5, "id": "3cfbb66c-2dcc-4293-a0f3-4e747ec5c880", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mzint
0204.7600653901.930681
1204.7788233431.441349
2204.7909753703.068912
3204.7959464317.227255
4204.7977084267.166873
.........
17351998.6471542567.956920
17361998.9082415539.517009
17371999.25436914109.211636
17381999.5109598432.185933
17391999.7828141875.846606
\n", "

1740 rows × 2 columns

\n", "
" ], "text/plain": [ " mz int\n", "0 204.760065 3901.930681\n", "1 204.778823 3431.441349\n", "2 204.790975 3703.068912\n", "3 204.795946 4317.227255\n", "4 204.797708 4267.166873\n", "... ... ...\n", "1735 1998.647154 2567.956920\n", "1736 1998.908241 5539.517009\n", "1737 1999.254369 14109.211636\n", "1738 1999.510959 8432.185933\n", "1739 1999.782814 1875.846606\n", "\n", "[1740 rows x 2 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "input_file = \"./test.mzML\"\n", "\n", "run = pymzml.run.Reader(input_file)\n", "# Get the first spec\n", "spec = run.next()\n", "# Convert to Pandas DataFrame\n", "df = pd.DataFrame(spec.centroidedPeaks).rename(columns={0:'mz', 1:'int'})\n", "df" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }